Center For Integrating Research and Learning

ArrowMass Spectra

This is a Java tutorial, which requires that you have Java, a free software, installed on your computer. It works best if you have the latest version of Java installed. If you are having trouble viewing or using this tutorial, try downloading the latest version of Java.

Mass spectrometers measure the range of possible masses for the particles making up the sample being tested. This results in a spectrum – the mass spectrum – for the substance under study. That spectrum reveals how many isotopes of a given element are to be found in the material. This is known as the isotope’s relative abundance – relative, that is, to the other isotopes found in the sample. Isotopes are atoms of the same element that have different atomic weights, due to varying numbers of neutrons (the neutrally-charged particles found in an atom's nucleus). Depending on the isotopes that make up a particular sample, researchers glean clues about its origin and how it was formed.

Interactive Java Tutorial
Our servers have detected that your web browser does not have the Java Virtual Machine installed or it is not functioning properly. Please install this software in order to view our interactive Java tutorials. You may download the necessary software by clicking on the "Get It Now" button below.


This tutorial shows the mass spectrum of seven different elements. Choose among them from the drop-down Menu of Elements. As you can see, gallium, for example, has two different isotopes. One of them – the one with an atomic weight of 69 – is more abundant than the other.

Related Electricity & Magnetism Pages

© 1995–2014 National High Magnetic Field Laboratory • 1800 E. Paul Dirac Drive, Tallahassee, FL 32310–3706 • Phone: (850) 644–0311 • Email: Webmaster

NSF and State of Florida logos NSF logo State of Florida logo

Site Map   |   Comments & Questions   |   Privacy Policy   |   Copyright   |   This site uses Google Analytics (Google Privacy Policy)
Funded by the National Science Foundation and the State of Florida