Center For Integrating Research and Learning

ArrowSuperconducting Magnet

As explained by Iain Dixon, research associate.

Superconducting Magnet
The lab's 900 MHz NMR magnet is
a superconducting magnet.

A superconducting magnet is just like a regular electromagnet, except that there is no resistance to electricity. If it's a resistive coil, you're losing power, and it's generating heat. There's no heat generation here, so you're not losing energy. For that, you can generally go to higher currents, which means you can have a more compact magnet. But also there's a low operating cost, due to the fact that you're not losing electrical energy as you power it. With traditional, resistive magnets, you have megawatts of power that you'll dump for the equivalent magnetic field. So superconducting magnets, to keep them superconducting, you have to have low temperatures, generally 4.2 Kelvin, approximately -452 degrees Fahrenheit. To do that, you have to have it in liquid helium, or some kind of cryo-cooler is required. The cost for helium is quite high, but still, costs are less than what it takes to power a resistive magnet.

Listen Audio version

Related Links


© 1995–2013 National High Magnetic Field Laboratory • 1800 E. Paul Dirac Drive, Tallahassee, FL 32310–3706 • Phone: (850) 644–0311 • Email: Webmaster

NSF and State of Florida logos NSF logo State of Florida logo


Site Map   |   Comments & Questions   |   Privacy Policy   |   Copyright   |   This site uses Google Analytics (Google Privacy Policy)
Funded by the National Science Foundation and the State of Florida