Your access to this article is provided through the subscription of Florida State Univ . What is this?

Abstract

Phys. Rev. Lett. 98, 016401 (2007)

Full Text: PDF |GZipped PS   
What Article options are available? View Cart   View MyArticles

Interplay between Fermi Surface Topology and Ordering in URu2Si2 Revealed through Abrupt Hall Coefficient Changes in Strong Magnetic Fields

Y. S. Oh,1 Kee Hoon Kim,1 P. A. Sharma,2 N. Harrison,2 H. Amitsuka,3 and J. A. Mydosh4

1CSCMR & FPRD, School of Physics and Astronomy, Seoul National University, Seoul 151-747, South Korea
2NHMFL, Los Alamos National Laboratory, MS E536, Los Alamos, New Mexico 87545, USA
3Graduate School of Science, Hokkaido University, N10W8 Sapporo 060-0810, Japan
4Institute of Physics II, University of Cologne, 50937 Cologne, Germany

(Received 20 September 2006; published 4 January 2007)

Temperature- and field-dependent measurements of the Hall effect of pure and 4% Rh-doped URu2Si2 reveal low density (0.03 hole/U) high mobility carriers to be unique to the “hidden order“ phase and consistent with an itinerant density-wave order parameter. The Fermi surface undergoes a series of abrupt changes as the magnetic field is increased. When combined with existing de Haas–van Alphen data, the Hall data expose a strong interplay between the stability of the “hidden order,” the degree of polarization of the Fermi liquid, and the Fermi surface topology.

URL: http://link.aps.org/abstract/PRL/v98/e016401

doi:10.1103/PhysRevLett.98.016401

PACS: 71.20.Lp, 71.18.+y, 71.27.+a

Additional Information

Full Text: PDF |GZipped PS   

References | Citing APS & Scitation Articles | CrossRef Citing Articles | All Citing Articles

For more information on reference linking in this journal, see Reference Sections and Reference Linking in Abstracts.

  1. P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, J. Phys. Condens. Matter 13, R723 (2001);
    M. R. Norman, Phys. Rev. B 71, 220405 (2005); [ISI]
    A. Yeh et al., Nature (London) 419, 459 (2002); [ISI]
    S. Sachdev, Science 288, 475 (2000);
    H. Löhneysen, J. Magn. Magn. Mater. 200, 532 (1999);
    P. Gegenwart et al., Phys. Rev. Lett. 89, 056402 (2002);
    G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001);
    S. A. Grigera et al., Science 294, 329 (2001);
    306, 1154 (2004).
  2. S. Paschen et al., Nature (London) 432, 881 (2004).
  3. T. T. M. Palstra et al., Phys. Rev. Lett. 55, 2727 (1985). [ISI]
  4. P. Chandra et al., Nature (London) 417, 831 (2002).
  5. H. Ohkuni et al., Philos. Mag. B 79, 1045 (1999).
  6. K. H. Kim et al., Phys. Rev. Lett. 91, 256401 (2003).
  7. K. H. Kim et al., Phys. Rev. Lett. 93, 206402 (2004).
  8. J. Schoenes et al., Phys. Rev. B 35, 5375 (1987). [ISI]
  9. A. LeR Dawson et al., J. Phys. Condens. Matter 1, 6817 (1989). [Inspec] [ISI]
  10. R. Bel et al., Phys. Rev. B 70, 220501(R) (2004).
  11. K. Okajima and S. Tanaka, J. Phys. Soc. Jpn. 53, 2332 (1984). [Inspec] [ISI]
  12. T. Sasaki, S. Endo, and N. Toyota, Phys. Rev. B 48, 1928 (1993). [ISI]
  13. P. M. Chaikin, J. Phys. I (France) 6, 1875 (1996).
  14. U. Beierlein et al., Synth. Met. 103, 2593 (1999). [Inspec]
  15. K. Bakker et al., Physica (Amsterdam) B186–B188, 720 (1993). [Inspec]
  16. A. Fert and P. M. Levy, Phys. Rev. B 36, 1907 (1987). [ISI]
  17. K. Behnia et al., Phys. Rev. Lett. 94, 156405 (2005).
  18. A. Silhanek et al., Physica (Amsterdam) B378–B380, 373 (2006). [Inspec]
  19. A. V. Silhanek et al., Phys. Rev. Lett. 95, 026403 (2005).
  20. A. V. Silhanek et al., Phys. Rev. Lett. 96, 136403 (2006).
  21. F. Ohkawa and H. Shimizu, J. Phys. Condens. Matter 11, L519 (1999).
  22. N. Harrison, M. Jaime, and J. A. Mydosh, Phys. Rev. Lett. 90, 096402 (2003). [ISI]
  23. P. A. Sharma et al., Phys. Rev. Lett. 97, 156401 (2006).
Full Text: PDF |GZipped PS   
CrossRef The American Physical Society is a member of CrossRef.