World-record Split Magnet system makes its debut
Media contact:
Jack Toth, 850-644-0854
Amy Mast, 850-644-1933
Split Coil magnet
Optics, nanoscience and semiconductor research will receive a boost this month with the debut of the National High Magnetic Field Laboratory's Split Magnet system, a custom-built, $2.5 million instrument with the potential to (literally) open up high-field magnet research. The magnet was successfully tested to just over 22 tesla this week, and is expected to reach 25 tesla. The project is funded by the National Science Foundation.
The magnet's design required that engineers rethink the structural limits of resistive magnets, then invent and patent the technology that could carry their idea through. The split magnet features large four elliptical ports that enable scientists direct, horizontal access to the magnet's central bore while maintaining a high magnetic field. "Tesla" is a measurement of the strength of a magnetic field; 1 tesla is equal to 20,000 times the Earth's magnetic field.
"We're excited for the opportunity to share this magnet's capabilities with our user community," said DC User Program Director Eric Palm. "Among other research possibilities, the Split Magnet will allow optics researchers unprecedented access to their samples, improve the quality of their data, and enable new types of experiments."
Split magnets are typically lower-field, less efficient systems with pinhole-sized access ports; the standing record for a magnet of this type was 17.5 tesla.
The elliptical shaped ports visible in the accompanying photo enlarge the previously pinhole-sized access for experiments by a factor of several hundred fold, a capability the laboratory's user community has long desired.
This engineering feat represents years of intense collaboration between the lab's engineering and research teams, headed by Magnet Science and Technology Scholar/ Scientist Jack Toth. Magnets are created by packing together dense, high-performance copper alloys and running a current through them, and all the magnet's tremendous forces are focused on the center of a magnet coil- right where Toth and his team engineered the four large ports. Building ports strong enough to withstand such high magnetic fields was at first deemed impossible.
While the technological breakthroughs enabling this magnet's construction are important, the multidisciplinary research possibilities it allows are even more exciting. Optics researchers in chemistry, physics and biology are poised to conduct research using the split coil, and the magnet's first user, travelling from Kent State, will conduct experiments this month.
Want to learn more about the Split Magnet? Search "split coil" at magnet.fsu.edu.
Posted June 9, 2011
The National High Magnetic Field Laboratory develops and operates state-of-the-art, high-magnetic-field facilities that faculty and visiting scientists and engineers use for research. The laboratory is sponsored by the National Science Foundation and the state of Florida. To learn more visit www.magnet.fsu.edu.